Deletion of the Bax gene disrupts sexual behavior and modestly impairs motor function in mice.

نویسندگان

  • Jigyasa Jyotika
  • Jill McCutcheon
  • Julie Laroche
  • Jeffrey D Blaustein
  • Nancy G Forger
چکیده

Cell death is a nearly ubiquitous feature of the developing nervous system, and differential death in males and females contributes to several well studied sex differences in neuron number. Nonetheless, the functional importance of neuronal cell death has been subjected to few direct tests. Bax, a pro-apoptotic protein, is required for cell death in many neural regions. Deletion of the Bax gene in mice increases neuron number in several areas and eliminates sex differences in cell number in the brain and spinal cord. Here, sexual and motor behaviors were examined in Bax-/- mice and their wild-type siblings to test the functional consequences of preventing Bax-dependent cell death. Animals were gonadectomized in adulthood and provided with ovarian hormones or with testosterone for tests of feminine and masculine sexual behaviors, respectively. Wild-type mice exhibited a sex difference in feminine sexual behavior, with high lordosis scores in females and low scores in males. This sex difference was eliminated by Bax deletion, with very low receptivity exhibited by both male and female Bax-/- mice. Masculine sexual behavior was not sexually dimorphic among wild-type mice, but mounts and pelvic thrusts were nearly eliminated in Bax-/- mice of both sexes. Motor strength and performance at low speeds on a RotaRod apparatus did not differ by sex or Bax gene status. However, Bax-/- animals exhibited impairments on the RotaRod at higher speeds. Thus, developmental cell death may be required for masculine and feminine sexual behaviors and the fine tuning of motor coordination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sleep deprivation disrupts striatal anti-apoptotic responses in 6-hydroxy dopamine-lesioned parkinsonian rats

Objective(s): The present study was conducted to examine the effect of sleep deprivation (SD) on the anti-apoptotic pathways in Parkinsonian rats. Materials and Methods: Male Wistar rats (n = 40) were assigned to four groups (10 animals each): sham surgery (Sham), 6-hydroxydopamine (6-OHDA)-lesioned (OH), 6-OHDA-lesioned plus grid control (OH+GC), 6-OHDA-lesioned plus SD (OH+SD). Parkinson’s di...

متن کامل

Generation of global Spata19 knockout mouse using CRISPR/Cas9 nickase technology

Introduction: SPATA19 gene is expressed in developmental stages of testis and some organs, but so far its function has only been examined in the testis. In this study, we provided an effective pathway for the generation of these mice using new CRISPR / Cas9 nickase method while generating Spata19 knockout mice for future studies in other organs. Materials and Methods: CRISPR / Cas9 nickase plas...

متن کامل

Mobile Phone Radiation exposure effects on Bax and Bcl-2 Genes Expression in hippocampal formation of mice brain

Introduction: The increasing use of electromagnetic field generators in our daily life in one hand and on contradictory reports on the effects of their waves on public health on the other hand encourages scientists to do more and more research work in this field. One of the most important topics is the study of gene defect due to microwave radiation. Materials and Met...

متن کامل

Effect of Vitamin C, as an Antioxidant, on Immobilization-Induced Changes in Sexual Behavior and Sperm Count in Male Mice

Sexual behavior in males is vulnerable to stress and it has been suggested that alterations in sexual behavior during stress is concomitant with spermatogenesis dysfunction. In this study, we investigated the effects of immobilization on sexual behavior and whether or not these effects are accompanied by changes in spermatogenesis process. The effect of antioxidant treatment on the sexual behav...

متن کامل

T-type channel blockade impairs long-term potentiation at the parallel fiber-Purkinje cell synapse and cerebellar learning.

CaV3.1 T-type channels are abundant at the cerebellar synapse between parallel fibers and Purkinje cells where they contribute to synaptic depolarization. So far, no specific physiological function has been attributed to these channels neither as charge carriers nor more specifically as Ca(2+) carriers. Here we analyze their incidence on synaptic plasticity, motor behavior, and cerebellar motor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental neurobiology

دوره 67 11  شماره 

صفحات  -

تاریخ انتشار 2007